
AD-AIOO 776 ROCKWELL INTERNATIONAL ANAHEIM CA F/0 5/8
PROGRAMMABLE IMAGE PROCESSING ELEMENT. (U)

UCFEB 81 S A WHITE IF33615-79-C-1905

WICLASSIFIED CSO0702/501 AFWALTR-80-1208 NL

LEVE
I AFWAL-TR-80-1208

N

PROGRAMMABLE IMAGE PROCESSING ELEMENT

ROCKWELL INTERNA4TIONA L
3370 MIRALOMA A VENUE

ANAHEIM, CA 92803

FEBRUARY, 1981

TECHNICAL REPORT AFWAL-TR-80-1208
Final Report for period September 1979 - September 1980

4 Approved for public release: distribution unlimited.

LUJ

AVIONICS LABORATORY
C-2 AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTrERSON AIR FORCE BASE, OHIO 45433

81. 3 0

NOL* ~ - ~--- - -- --

NOTICE

When Government drawings, spe-ifications, or other data are used for
any purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data, is not to be regarded by
implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS).
At NTIS, it will be available to the general public, including foreign
nations.

This technical report has been rt lewed and is approved for publication.

D. COUTURIER ROBERT E. CONKLIN,
PROJECT ENGINEER CHIEF, PROCESSOR

FOR THE COW4ANDER TECHNOLOGY GROUP

STANLEY E. WAGN , CHIEF
MICROELICTRONICOBRANCH
ELECTRONIC TECHNOLOGY DIVISION

I:I

"If your address has changed, if you wish to be removed from our
*- mailing list, or if the addressee is no longer employed by your organiza-

tion please notify AFWAL/AADE-1 , W-PAFB, OH 45433
to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.
AIR FORCE/56780/17 June 1981 - 80

AL

SECURITY CL ASS-FICATtON OF " r 'i E ,W%- r).t. . tered)

\ D REPORT DOfCETA~TIOPA GE RIFA INSTRUCTIONS
REPOR D U N' PAGEBEFGKE COMPLETING FORM

FWAIiR-802GT8 A ESSCN NO. 3 PFCI-'FI,'T 3 CATALOnG NUMBER! * AF AL 7TR-80-1208 ,k rA /] (',

44. TITLE (-nd S1,btil .) 5- TNFB.Q.;;.I.,

.. ' Final Xep to
: PROGRAMMABLE IMAGE PROCESSING ELEMENT. t 79 - Se W89

. // Sef.g U9O--Se5 g
• • - '/], C80-703/501

7. AUTHOR(.) G N-____ -

I.A Stanley A.1White F33615-79-C-1905

9. PERFORMING ORGANIZATION NAME AND ADDRESS ' .TCMENT PRFCT. TASK
Rockwell International A S_ I Po9 UI3NMo7

3370 Miraloma Avenue , 3 07

Anaheim, CA 92803 . 1'
I I. CONTROLLING OFFICE NAME AND ADDRESS 1' .4PORT . . .-

Avionics Laboratory (AFWAL/AADE) ' Februepy 1981
Air Force Wright Aeronautical Laboratories (AFSC) ,i.r--A
Wright-Patterson AFB, Ohio 45433 59

14 MONITORING AGENCY NAME & ADDRESS(if different from ControIling Offie) 15 SECURITY CLASS. (of fhI. repot,

Unclassi fied
15.. DECLASSIFT:ATION rDOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repot)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteed in Block 20. it different fon Report)

IS SUPPLEMENTARY NOTES

Parts of section 3 to be published, "An Architecture for a High-Speed Digital
Signal Processing Device," IEEE International Symposium on Circuits and Systems,
Chicago Ill., April 1981. Parts of section 4 to be published "An Architecture
or a iItgl Prpgrana le I a e Proc ssin Eleent," IJEE goence on

vector multiplier sliding window
inner product transversal filter
Peled-Liu mechanization multiply/accumulate
distributed arithmetic

ABSTRACT (Continue on re erse side If neces ary end Identlfy bv blirk number)

The generic signal-processing equations were analyzed and two specific architec-
tures were evolved for the efficient implementation of these equations. The
first architecture which was considered consisted of a set for four arithmetic
sections. Each section was capable of combining a pair of 4-element vectors, 16
bits per element, using distributed arithmetic. The second architectural design
was pursued which consisted of a single arithmetic section;to produce the Inner t
product y I a x every 90 ns using a modified Peled-Liu algorithm.

n=. n n (Over)

DD JN 1473 EDITION OF NOV 65,S OBSOLETE

SECURITY c: DSUIA ~.,1TI AE'I e ~7 n~is/D , AAF--

' SECURITN CLASSIFICATION OF THIS PAGE(Iftn Data Entered)

Input word lengths are limited to 8 bits, 2's complement. Coefficients are
variable. The output is full precision. Input data (x's) may be loaded in
parallel sequentially, or in parallel 3 at a time; or serially 1, 3 or 9 at
a time. The device can be programmed to function as a sliding window, a
transversal filter, or a vector multiplier. Multiple devices may be chained
together to increase computational accuracy or to extend filter lengths
beyond 9 taps.

4

ii

y

SECURITY CLASSIFICATION OF THIS PAGE(Whfn Dale Entered)

II

,F w- ~ .

* PREFACE

The Programmable Image Processing Element (PIPE) program was

performed by Rockwell International, 3370 Miraloma Avenue, Anaheim,

California 92803, under Contract F33615-79-C-1905. The results were

first published in the final report draft in October 1980 bearing

Rockwell's document number C80-703/501. >

The program was conducted from September 1979 through September 1980.

The program monitors were Dr. Ron Belt and Mr. Guy Couturier, Avionics

Laboratory (AFWAL/AADE), Air Force Wright Aeronautical Laboratories

(AFSC), Wright Patterson Air Force Base, Ohio 45433.

This document is unclassified; no part of it has been taken from a

classified document.

-Accession For
!NTIS GRA&I
DTIC TAB

Unannoiincd [
.... Just if icct i 01!

By

_Dis.tribution _

__Availability Codes

Avail and/or
4Dist Speoinl

4. iii

• I , ; -: . ..

TABLE OF CONTENTS

1. Introduction ... 1

2. Why PIPE? .. 2

2.1 Signal Processing Requirements of DoD 2

3. Recommended Architecture 6

3.1 Principle of Operation 6
3.2 The Search for an Optimum Answer 9
3.3 Expanding the Versatility 11
3.4 A Solution Based on Applications 17
3.5 A Candidate Element 21
3.6 Problems and Retrenchment 28

4. The Nine-Element Vector Multiplier 29

4.1 Overall Description of PIPE Device 29
4.2 The PIPE Algorithm 31
4.3 The Mechanics of the Algorithm 33
4.4 Modifying the Basic Algorithm 35
4.5 Mechanization of the Modified Algorithms 40

4.5.1 Coefficient Input Section 40
4.5.2 Partial-Product-Memory Section 43
4.5.3 Data Input Section 45
4.5.4 Arithmetic Section 50
4.5.5 Output Section 52
4.5.6 Timing and Control Section 52
4.5.7 Overall Chip Structure 52
4.5.8 Using Multiple Devices for High Accuracy.. 52

Appendix A - Logic Design and Layout 56

References ... 59

4v

.5w!- --*j-

LIST OF ILLUSTRATIONS
4

1 Examples of Compass Gradient Masks 5
2 The Eight Principal Directions on a 3x3 Grid 5
3 Basic ROM-Accumulator Structure 7
4 Block Multiplier Mechanization 8
5 Conventional Mechanization 9
6 Candidate Hybrid Configuration for Inner-Product Generation . 10
7 Skeleton of Signal Processing Section 21
8 Adder-Tree Section .. 22
9 Partial-Product Register Section 23
10 Partial-Product Register Selector 24
11 Data-Input Register Section 25
12 Coefficient-Update-Register Section 25
13 Signal Processing Section (1 of 4 sections on a chip) 26
14 Total Signal-Processing Device 27
15 Data-Bit Array .. 31
16 Basic PIPE Architecture 35
17 Coefficient-Input Circuitry 41
18 Coefficient-Input Timing Diagram 42
19 Coefficient Memory .. 44
20 Data Input Section .. 46
21 PIPE Arithmetic and Output Section 48
22 Computing Sequence .. 51
23 Timing Sequence of Arithmetic Section 53
24 Timing Generator for Arithmetic Section 54
25 PIPE Chip Organization 55

LIST OF TABLES

Table Page
1 Basic Memory Structure and Organization 7
2 Boundary Conditions ... 13

3 A for Various B, N Values 15

4 . B (B,J) .. 16

5 Adder Requirements for 3x3 Organization 17
6 Adder Requirements for 4x4 Organization 17
7 Fuzz-Phase Filter List 19
8 "A" Partial Product Memory Contents and Addressing 37
9 "B" Partial Product Memory Contents and Addressing 38

v1

,f

1. Introduction

The Programmable Image Processing Element (PIPE) program, which

was conducted by Rockwell International from September 1979 through

September 1980, consisted of three actual phases:

1. The definition of a programmable device which could

form the inner product of a pair of 16-element

vectors;

2. the definition of a programmable device which could

form the inner product of a pair of 9-element

vectors;

3. the partial logical design, simulation, and layout

of the device defined in 2.

Although a proposal was submitted to carry the program through the

making and delivery of optomasks, that proposal was not accepted

due to lack of funds.

This report contains four chapters. Chapter 2 addresses the rationale

for the existence of the PIPE, Chapter 3 describes the device which

was defined to combine a pair of 16-element vectors, and Chapter 4

describes the device which was defined to combine a pair of 9-element

vectors.

The summary of the device design effort is contained In the Appendix.

I!

. .. . -..- I, "
IP +, ., . + /.+. +1_

2. Why PIPE?

2.1 Signal Processing Requirements of DoD

Within any digital communications system, or radar, or sonar, or control

system we encounter innumerable requirements which are in a form known

as a digital filter. To the signal this function is analagous to the

familiar analog filters such as bandpass or low-pass or high-pass. These

filters are described by equations of the form

N M

Yk a n Xn-k + Z bnYn-k

n=O n=l

where Yk is the output data sequence, xk is the input data sequence, and

the an and bn coefficients describe the filter characteristic. Modulators

are described by equations of a similar but degenerate form

Yk= mk Xk

where m, is the modulation sequence. Multiplexers are described by equations

of the form

L
Yk n kZ

Z=l

where one nZ at a time is unity, the others are zero and XkZ is the f
t

input at time k.

Image processing requirements are frequently of the form

lIJ-~m = i~d ak xrn-j, n-k
j k

2

-- l r -,. i - - -I- ,

as are many forms of one and two-dimensional transforms. This primal

computational form has arisen so frequently in signal-processing systems

that the efficient mecharization of this computation is seen as a vital

step in DoD's quest for high-speed Signal processing.

Mechanization of signal-processing functions is painfully slow when faced

with high-speed data for real-time processing. Digital signal-processing

systems can be improved in terms of speed and lower cost if the normally

employed arithmetic operations are streamlined.

For instance, a high resolution 875-line video system with a 4:3 aspect

ratio and 8-bit amplitude resolution provides about 8.17 million bits per

frame. At a frame rate of 60 per second, a 3-color display now requires a

data rate of 1.47 Gigabits/sec! Image enhancement calculations at that

speed seem impossible by today's standards.

Special signal-processing devices and organizations must be developed to

meet the increasingly difficult signal-processing requirements. The

development of the programmable image-processing element is an effort to

evolve a programmable microprocessor type of device which is specifically

a signal processor for high data rate applications.

The most frequently required image-processing function is that of a

sliding window. The input is a 3x3 array of picture elements, or pixels.

Each pixel is weighted by a coefficient, and the sum of products is the

output, usually assigned to a location in output space which corresponds

to the center of the 3x3 array.

Edge enhancement can be performed with an approximation to the bi-

Laplacian operator, a as described in reference 1:

3

Jxy

:.. .~. .

1 -2 1
. : -2 4 -2

-2 1

For directional edge information there exist several means to approximate

the partial derivative in the direction of interest as shown in the

following figures I and 2 which has been taken from reference 2.

These masks are but a sampling of the variety of window functions.

Integration can also be performed by approximating a sidelobe-suppressing

mean operator:

1 2 1MO = 2 4 2
1 2 1J

The purpose of this section has been to illustrate the versatility of

and the need for inner-product operators for signal processing.

44

!;
'4

I i , 7 ' " ; ' p " .-] i I , , "

DETEC7ION ANU COOING CF COGES USI'dG OIRECTIONAL MASKS

Dicectior of Direction of Prewitt Kirsch Three-level Five-level
Edge Gradient Masks Masks Sur.pe Masks Simple Mbsks

1 oti[1] 112 5 5] 1~ - 1] [1 2 1]
North e 2 1 5 0 0 0 2 0 1

3 - - [3 [-3 - 1 1 2 J

1 est [5] 5:-A] 1H 1_] [HA_]Northwest 1 2 -I 0 - 0 1 0 1
1 - 1 3-3 -3 0 1- 1 0 1I -2j

-ouh] 52 -3 23] 1 0 A1] 1 A -1]
o West 1 2 5 0 1 0 2 0

1 5 -3 -3 1 0 -1 1 0 -

[22 1] [3 -3 1 12;] [22

SSouthwest [-2 -1 0 -] 0 -1] 0 -1

-1 [oth3s [23] [1 1 -1] 1 -2 -11AA
1 1 /S1

4South 1 -2 1 3 0 -3 0 0 0 0

1 5 5 5 1 1 11 2 1-1 1 [i- --1 [1 -1 0 [2 -1 0
. Southeast 1 -2 -3 0 5 1 0 1 -_ 0 1

S 1 5 0 11! -1 1 -3 -] 1: 0 1] [-1 0 11
6East - 2 1 3 0 5 1 0 1 2 0 2

1 - -3 5 1 0 1 1 0 1

7Northeast 1i - 3 0 5 i 0 1 1 0 1

Figure 1. Examples of Compass Gradient Masks

3 2 "I

Figure 2. The Eight Principal

4 < - 0 Directions on a 3x3
Grid

S 6 7

Jl" G.S. Robinson, "Detection and Coding of Edges Using Directional Masks," SPIE

Vnl. 87, Advancesin Image Transmission Techniques (1976) pp. 117-125.

-.JL, -I; -- -,-. -- 1 7

3. Recommended Architecture

3.1 Principle of Operation

In the preceding chapter we demonstrated that our fundamental

premise is that most signal-processing tasks can be expressed as a

vector dot (or inner, or scalar) product,

e.g.: p = xI Yl + x2 Y2 + xY yj

J
- E xj y.

J=l

'J y

where x = col [x1 , x2. xj]

and y= col YY' 2.... Y]

As Peled and Liu observed,3 if we consider the xj as being composed of

numbers of K amplitude bits and a sign bit, the x. can be expressed as

fractional values:

K -k
x k=O

Therefore, the inner product may be written as

J K -k

j=l k=O akyj

K J -k: j a: aj ky j 2

k=O j

KE qk 2- k

k=O

t where

j=l jkYJ

6

Jh

The above expressions imply two facts:

Each qk may be generated by one table lookup operation in a

2J- 1word memory, where the word length, W = 1log 2 J] +

requirement on individual yj.

p may be generated by K shift-and-add (S&A) operations.

These equations can be mechanized by the simple configuration which is

shown below,

ROM

Figure 3. Basic ROM-Accumulator Structure

where the organization of the ROM is indicated below in Table 1 for the

J=3 case.

TABLE 1. BASIC MEMORY STRUCTURE & ORGANIZATION

INPUT PATTERN EQUALS MEMORY

MEMORY ADDRESS CONTENT

Xl X2 X3 qk

0 0 0 0

0 0 1 Y3

0 1 0 Y2
0 1 1 y2+Y3
1 0 0 Yl

1 0 1 yl+y 3

1 1 0 yl+Y2
1 1 yl+Y2+Y3

7

4

*a l .. W

If our problem were initially one of convolution, such as
J

Sh Xh-j Yj
j=l

then
= ii i bjk2 -iPh ah-j,k bh-j,i-k'

i j k

which is two-dimensional convolution. Three facts can be drawn out from this:

1. Looking at the problem as one of bit manipulation raises the

order of convolution by only one. (The generalization can be

rigorously justified.)

2. Convergence is uniform so we can operate the summations in any

order without affecting the answer.

3. This impacts heavily computing time and complexity of hardware.

Let's return our attention to the basic inner-product statement:

i j k ajk bj,i-k

We could mechanize this by summing over j, then over k

21
21 S

, . p

V~~WR &~ O AG

• ARE OUITtE COMPLtX

Figure 4. Block Multiplier Mechanization

8

or we could mechanize by summing this over k, then over j

1 Yl x2 V2 Xj Yj

K SIT K BIT KBSIT
BY BY By FOR LARGE J

K SIT K BIT SIT THIS IS QUITE

MULT, MULT. MULT. A MESS TOO

SUMMER

Figure 5 Conventional Mechanization

Neither solution is satisfactory. Each solution represents an extreme.

If we explore summing over part of j, several times, then over k, then our
remainder of j (which we can do because the order of operations does not

affect the answer), we have in interesting hybrid solution.

3.2 The Search for an Optimum Answer4

Suppose

1. We use M table-lookup multipliers

2. Each block multiplier operates on vectors of dimension N
S .

Since the total dimension of the vectors in the problem is J, then J=MN.

4- A product accuracy of K + I bits will be maintained, so

,I
J H

Jul jyj ml m

9

II

" " :- • ,< I ' I '* ,.,-'.~ w'- . .- m

4

where P. is the output of the 2 block multiplier

N
i Pm = l Z n+N(m-1) Yn+N(m-1)

and each x can be decomposed into its constituent bits:

K k
x X a(n,m,Nk)2Xn+N(m-l) = Tk=O

The new system which we are examining is shown below in Figure 6.

Y1 YN YN+I Y2N YJ+I-N YJ

Xl XN+l--o, KJ+I.N_* 1OF M
BLOCK

x2 -MULTIPLIERS

XN X2N Xj

+:. T P M OUTPUT. P

Figure 6 Candidate Hybrid Configuration
for Inner-Product Generation

10
-..-

3. Expanding the Versatility

We have much more powerful processing means if both x and y components

are free variables. Let's go back to the inner-product statement

J
p= EJ~ xjy.

where x was composed of K + 1 bits:

Kx. E . k2 "
k=O "

Now y can be similarly composed of L + 1 bits:

L
=0

so

p. z a jk b jt2(k+t)
P=Zj k Z

If we define a new exponent of 2

I A k+t

the inner-product statement becomes

p = E alk bilk
2 -

i j k j ~-

which is one-dimensional convolution.

4,

, F
.,-'

Now we need a computational-complexity measure.

A minimum-complexity mechanization for a serial/parallel multiplier

requires K full adders, plus some overhead logic. We will use this

to construct our computational complexity measure.

J
Conventional mechanization of p = I xjyj therefore requires

K adders x J products + [J-1] adders to sum products = KJ+J-l adders.product

A block multiplier requires K adders for the shift-and-add sectionblock mult.

plus the adder tree.

The number of adders required to combine N inputs into sets of S isIS1

therefore, the total number of adders in a block multiplier structure is

N N (N (N+I) -2N _ (N+1).
S=2()

The total number of adders for the hybrid collection-of-block-multipliers

approach is

N[K+2N- N+I)] adders x M multipliers + [M-l] adders to sum

products.

Table 2 explores the boundary conditions of mechanization approach vs

the dimension of the vector for two sample word lengths; 8 bits and 16 bits

are explored as an example.

12

I

Table 2 - BOUNDARY CONDITIONS

*COMPARISON OF MULTIPLIER COMPLEXITY
(NUMBER OF ADDERS REQUIRED)

Dimension of M=l; N=J M=J; N=I
Vectors, J Block Multiplier Conventional

K+2 -(J+1) J(K+I)-l

8 Bits 16 Bits 8 Bits 16 Bits

2 8 16 15 31

3 11 19 23 47

4 18 26 31 63

5 33 41 39 79

6 64 72 47 95

7 127 135 55 il1

8 254 262 63 127

9 509 517 71 143

I 10 1020 1028 79 159

I

*

13

LM AL Sii

We see that an optimum solution lies between l<M<J and I<N<J.

The number of adders used in one hybrid solution is:

A = [K+2 N - (N+l)] M+[M-l] = [K+2 N-N] M-l

Our formal minimization procedure is the following:

Normalize with respect to J = MN

Define the total number of bits as B = K+l

For computational convenience, define the auxiliary variable

A-1

B-1+2 N
I

and minimize A with respect to N. Now, let us compare this

result with that of conventional mechanization:

A = KJ+J-I = (B-l)J+J-l = BJ-lc

For computational simplicity we will describe another auxiliary

variable:

c = Ac+ = B

Notice that we cannot compare this with straight block multiplier
mechanization using the same formulation because the parameter J

cannot be removed by normalizing, i.e.:

AB = K+2J - (J+l) = B+2
J - J-2

A AB+l - -l
B J = '

14

II

A

A comparison of A for various values of B and N is shown in Table 3. TheA

N=l column is identically the same as Ac. For word lengths of 4 bits the

optimum combination is 2-element vectors; for word lengths of 8, 12, and 16

bits, the optimum combination is 3-element vectors; for word lengths of 20,

24, 28, 32, and 36 bits the optimum combination is 4-element vectors.

A
TABLE 3. A FOR VARIOUS B, N VALUES

B l(=AC) 2 3 4 5

4 4 2 1/2 2 2/3 33/4 6

8 8 4 1/2 4 43/4 6 4/5

12 12 6 1/2 5 1/3 53/4 73/5
16 16 8 1/2 6-2/3 6-3/4 8-2/5

20 20 10 1/2 8 7-3/4 9-1/5

24 24 12 1/2 9-13 8-3/4 10

28 28 14 1/2 10-2/3 9-3/4 10-4/5

32 32 16 1/2 12 10-3/4 11-3/5

36 36 18 1/2 13-1/3 11-3/4 12-2/5

Shown in Table 4 is a tabulation of AB for various values of B and J.

Not suprisingly, if J is replaced by N, Table 4 contains the same

numerical entries as Table 3, validating again our conclusion of what

constitutes a minimum-complexity multiplier.

15

!TI

- -4 (\j .- 4 .- 4 - r CJ -

C) C:) C:) C) C) 00 -) -) C

-4I I I I IO I I I

o ko 0- 0 0 0 0h 0Y

00 D 0 00 CC) 00 () co

OD ~ e CV) t, CV) * m - CV) r- n

LA U i LA AA A LA L LA

fC O Coi to mo Co CO Co Co

I- 4 C\J (\4 Ci Ci C 14L

koI O -I LO OI

N. ~ ~ ~ C Co C h C 0 - -
-4- 1--4JCJ C' .

Co ~O LO ('J LO LO ' A L %

Cor m Il -I I I I
<cC~t 0D 04 "- 'J CJ ~ ~ ~

-4 4 -4 - -4r -4t zr -4 -

m ~ ~ ~ L I" LA n l

IA I I I I I I C) C'

m -I In Io I- Io Ch-

() Ln 1.0 N- -4Oh .- 4

cm kf C) to

CI~ -4 -4, COj - ~ m C.J

I I 0 -4 it

C'. LA LA 16 ~

3.4 A Solution Based on Applications

The following set of observations appears to be valid:

For word lengths of 8, 12, and 16 bits, 3x3 table lookup multi-
pliers are most efficient.

For word lengths greater than 16 bits, 4x4 table lookup multi-
pliers are most efficient. If, however, we used the 3x3 table
lookup multipliers for the greater word length cases, the per-
centages of extra adders (over the optimum 4x4) is

TABLE 5 ADDER REQUIREMENTS
FOR 3x3 ORGANIZATION

WORD LENGTH, B ! % OF ADDITIONAL
'NORMALIZED ADDERS

20 3%

24 7%

28 9%

32 12%

36 13%

We may therefore conclude that the penalty is small for the
advantages gained by using the standardized 3x3 table lookup
multiplier structure.

On the other hand, if we use the 4x4 table-lookup multiplier
for the shorter word lengths, the penalty paid in terms of
additional adders over the 3x3 table-lookup multiplier is
shown below in Table 6.

TABLE 6 ADDER REQUIREMENTS
FOR 4x4 ORGANIZATION

% OF ADDITIONAL
WORD LENGTH, B NORMALIZED ADDEFS

4 41

8 19

12 8

16 1

We have to look now at applications in order to decide if we should
use a 3x3 multiplier as standard or a 4x4 multiplier.

17

The 4x4 multiplier is a natural building block to perform a 2D transform of

dimension 2 x 2N where N is an integer.

The 4x4 multiplier is also the natural building block to perform a complex

FFT butterfly computation. The decimate-in-frequency butterfly is described by

X =u + V

Z u U- V

where the complex inputs are u and v, the complex outputs are x and y, the

complex weighting coefficient is w, and z is an auxiliary variable. Then

xr =U r + v r

X. = u. + V.

Yr Ur wr ui wi - Vr wr +Viw

Yi = ur wi + ui Wr - Vr wi vi Wr
or

x r. 1 0 1 0 ur

xi 0 1 0 1 ui

Yr Wr -wi -wr wi V r

Yi wi wr -wi -wr .vii

which can be performed handily by our 4x4 structure. The decimate-in-

time butterfly is described by

X=U+p

X = U +p

p= vw

where u, v, w, x, and y are as described above and p is an auxiliary variable.

18

X U + V W - V.r r r r 1 1
x i = u. + vr Wi + v wr

Yr Ur Vr Wr +v wi

Yi ui Vr wi - vi Wr

or
x r' 1 0 Wr -Wi ur

xi 0 1 wi wr ui

Yr 1 0 -wr wi Vr

Yi 0 1 -wi wr vi

which again can be performed handily by the 4x4 structure.

A set of 4 such vector multipliers can also be used directly as a
general 4x4 coordinate transformer or as a matrix multiplier, or
to mechanize a filter as described below in Table 7.

TABLE 7 FUZZ-PHRASE FILTER LIST

(Pick a line from 3ch category, A thru G, to describe function)

A. E.
1. Fixed Coefficient 1. One-Dimensional
2. Programmed time-variable 2. Two-Dimensional

parameter
3. Adaptive

F.
B. I. Low-pass

1. Linear 2. High-pass
2. Programmed Nonlinear 3. Bandpass

4. Band reject
C. 5. All pass

1. Recursive 6. Arbitrary spectrum
2. Transversal shaping

D. G.

1. Fixed Structure 1. Filter
2. Variable Order (up to 16 taps) 2. Equalizer

19

The same identical architecture can be programmed to also function as a

1. Modulator/Demodulator (set of 4)
2. Coordinate Transformer (up to 4 rotations)
3. Polynomial Function Generator
4. Element of Pattern Classifier
5. Multiplexer (4-4:1 or 2-8:1 or 1-8:1 and 2-4:1 or 1-12:1 and

1-4:1 or 1-16:1)
6. Matched Filter
7. Edge-Extraction Mask
8. Sobel Operator
9. Cosine Transformer (4x4, or 8x2, or 16xl)

10. Hadamard Transformer
11. Unsharp Masking
12. Despike Element
13. Etc.

For Operations in: Mapmatching
Midcourse Updating
Doppler Radar and processing
Target detection, identification, tracking, cueing
Aimpoint selection
Correlation
Data windowing
Filtering of signals
Sonar spectrum analysis
Inertial platform stabilization
Instrument caging
Flight control stability augmentation
Adaptive noise cancelling
Speech enhancement
Adaptive line enhancement/cancellation
Channel equalization for data modems
Data compaction/AJ protection
FLIR Display Systems
Dynamic range compression functions
Autothresholdinq for video noise limiting
Chrome separation for digital video
Pattern recognition systems
Automatic fingerprint classification
Optical character reader
Nonlinear noise filter
Thin-fill 2D data reduction

20

41!

3.5 A Candidate Element

The skeleton of a basic signal processing section based on the foregoing

is shown in Figure 7. This circuit mechanizes in each of 4 sections the

following function

3

Yk aJ kX jk
j=0

where the Xjk may be independent (general inner product), or successive

samples of an input (transversal filter) or some may be successive samples

of the output (recursive filter). The coefficients ajk may be wholly

replaced each sample time, or incrementally updated (adaptive filter).

4 SETS OF
COEFFICIENTS COEFFICIENT ADDERREGISTERS TE

ADDRESS LOAD MEMORY

ONE OUTPUTAD

Figure 7 Skeleton of Signal Processing Section
(1 of 4 sections on a chip)

tI The 4 data words address the partial-product memory as in section 3-1. The

contents of the partial-product memory were obtained by combining the

coefficients through the adder tree.

I.
, 21

Buttner and Schssler5 have shown that since Xik can be expressed in terms

of its N bits, bjkm' then for 2's-complement format,
l N-i

Xjk =-bjkO + n bjkn 2-
n-

and since N-11 .1(Xk) lbko-jO 1 -n -
Xjk fxjk--f (-xjk) = 2(b -bj + Z (bjkn-bjkn) 2 -2"

2jOjkO 2 n=-i j

then N-b
2 [-q(O)2 n-i (bjko-bjko q({b 1)ko]

where 3 _

q(n) = q({bjkn}1) 1= ajk(bjkn-bjkn for n [0, 7J

and

q(n) = -q(15-n) for n t18, 15j

An extremely efficient streamlined mechanization is shown below. The a's

are combined to generate all possible q(n) as shown in the adder tree of

Figure 8.

L' _

I I

SFigure B. Adder-tree Section

22

The a's are 16-bit numbers, but the q(n) are 18-bit numbers since q(n)

can be as large as the sum of 4 a's. We want 3 sets of "q" registers;

one as the momentary working set, and one or two being loaded as shown

in Figure 9.

FROM NO. 1 FROM NO. 2 REGISTER

ADDER TREE ADDER TREE SELECTED
BY DECODER

q(0)

0q(1) 0

I.O

-q(3) -

O q(5)

018

8 SERIAL-PARALLEL
REGISTERS AT 18 TO T
BITS EACH PARALLEL

TO 2 OTHER PARTIAL ADDERISUBTR
PRODUCT REGISTER SECTIONS

Figure 9. Partial-Product Register Section

The outputs which feed the adder/subtractor are then sumed (or differenced)

according to Yk = rq(n)2-n

. The selection of a particular q(n) is according to the bits in Xjk, i.e.,

the bjkn* The decoding network (partial-product register selector) is
shown in Figure 10.

23

I

-~

_ _ __ - a" _

Figure 10. Partial-Product Register Selector

The circuit of Figure 10 is driven by the data-ii-put-register section which is

shown in Figure 11. The 4 shift registers may each be driven from a serial

input path, chained with the preceding register or loaded from the output.

These 3 options for each of 4 registers give 12 control states which are

addressed by 4 function-select lines.

The x outputs from the shift registers may also be used to provide the "internal"

signals to the coefficient update register section which is shown in Figure 12.

This is to facilitate the adaptive filter update computation

ajk = aj(k-l) + "Xjksgn(Ek)
6

The 4 is mechanized by the shift. Since the update must be formed before the

error signal, Ek, is available, one update-register section assumes ck > 0, the

other assumes Ek < 0. The correct q-register set is chosen after C k has been

completed. This is the reason for two sets of registers beinq loaded simultaneously.

A basic signal-processing section based upon the foregoing is shown in Figure 13.

24

SIGN-BIT TIMING PULSE

CHAINING TO ADD/ SUBTRACT CONTROL
OF' OPARALLEL ADDER

CINITS

FUCTO SELECT.R

ET.. X-

DASHIFT - aS0.X
INPUTSjINT.

UA

E l- 16-BTSR.X -0

I SHIFT a

INT. - BITBITS.R 3

SELEC SELCTIO SELETR

Figure 12. Cofict-pdt-Register Section

*r
EXT

SHIFT25
IU

IN . - _ + .,. 2 -. BI S --11---- ul----..--- .~---

0 L

on

'4-
zo

ui 0

cc G)

0 V) L

-- 0

0~

::3

ui 4)

00
LULL

PH a - * ,-LLJ

cc0cc0C -j 4-

0 Li.)

0

tU 4u z

UJ~~0 CLCC uiLO&

LN q L L L26

Figure 14 shows how the signal-processing sections of Figure 13 are

interconnected to extend the upper limit of the Yk sum from 3 to a

number as great as 15 on a single chip.

UJ. LL, LL

U-1 U. <I I&1 1 L
CHAINED SIGNAL SIGNAL SIGNAL SIGNAL CHAINED

INPUT PROCESSING PROCESSING PROCESSING PROCESSING
INPUT SECTION SECTION SECTION SECTION OUTPUT

I(FIG 13 I (F, 13) 1 {.WI, 13 i(FIG 13 I

SECTION SECTION SUMMED SECTION SECTION
OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT

Figure 14. Total Signal-Processing Device

The functions which we have discussed above are capable of mechanizing

signal-processing requirements such as:

* Vector-matrix operator with fixed or variable coefficients 4 x 4,

or 2 x 8, or l x 8 and 2 x 4, or I x 12 and l x 4 or l x 16

(dimensions may be raised by chaining with other devices.)

Generalized fast-generalized-transform operator (decimate in time

or decimate in sequency).

-Digital filter (up to 4)

fixed parameter, variable parameter or adaptive

denominator order, D c{0,15}

numerator order, N c{0,l5-D}

27

Set of 4 modulators/demodulators

Multi pl exers

4-4:1 or 2-8:1 or 1-8:1 and 2-4:1 or 1-12:1 and 1-4:1 or 1-16:1

Image-processing functions such as sliding windows

3.6 Problems and Retrenchment

A preliminary transistor count revealed that this very desirable structure

would be an extremely ambitious circuit with 88,000 transistors. The device

design could not be completed under the contract.

A second, less ambitious, structure which was a nine-element vector multi-

plier was pursued into the design and layout stages. That design, which

became identified as the PIPE device, is described in the following chapter.

2.

Y

28

4. The Nine-Element Vector Multiplier

4.1 Overall Description of PIPE Device

The PIPE provides every nine 10 ns-clock periods the sum of products

9
y = n a n xn '

n=1

where each an and xn is an 8-bit 2's-complement number, thereby performing

a true multiply-and-accumulate function 108 times per second. The full 19-

bit product is available as an output which permits the devices to be com-

bined to perform higher accuracy computations. The coefficient a's are

parallel loaded and stored on-chip while the data x's may be loaded serially

or in parallel in a fashion which makes the chip directly usable as a FIR

(finite-impulse response) filter described by the transfer function

8
G(z) E a z- n

n=0 n

Any number of such chips can be chained together to form a longer filter.

Only an external summing means is required to accumulate the final result.

The device description is given below:

Supply Voltage: 5 volts

CMOS/SOS 2 Pm technology using static logic

Clock Frequency: 100 MHz

Operating temperature range: -551C to +1250C

Packaging: leadless hermetic chip carrier corresponding

to JDEC specification

Input specification: there are 7 input formats; all input

patterns must occur within 9 clock periods.

These formats are:

1 1. single parallel input applied 9 (or fewer)

consecutive times.

2. single parallel input applied once

3. 3 parallel inputs applied 3 times

4. 3 parallel inputs applied once

29

5. single serial input applied once

6. three serial inputs applied once

7. nine serial inputs applied once

The input data word is in 2's-complement, 8-bit

format. The format is controlled by a 3-bit

format-control line. The input section has 28

pins (3x8, 1 out, 3 control).

0 Output specification:

Single 10-bit output tristate bus for full accuracy.

Least significant 10 bits available immediately.

Flag indicates when the 10 most significant bits are ready.

Most significant bits on output bus in response to external strobe.

The output section has 14 pins (10 out, 1 flag for LSBs ready,

1 flag for MSBs ready, 1 MSB strobe, 1 reset).

* Coefficient specification:

Single 8-bit input bus for one-at-a-time parallel loading of 8-bit

2's-complement coefficient.

Separate 4-bit input-address identification.

One load control, one memory-write control.

The coefficient section has 14 pins.

* The pins required by the PIPE device are given below:

24 for 3 parallel 8-bit input data words

1 for serial data-line out

3 for input-data format

10 for parallel output data

2 for output flags

2 for output control

8 for parallel coefficient word in

4 for coefficient address

2 for coefficient control

1 for word timing
1 for clock
1 for power

-1 for ground

60 pins committed

30

I ., - ' : ," - - " " "

4.2 The PIPE Algorithm

Recall that the PIPE forms the product

9
y E a an xn

n=l

where the xn are input data words, the an stored coefficients, and y is

the sum of the products. Both the an and the xn are 8-bit, 2's-complement

numbers; xn is composed of the bits {b nm} where m = 0, 1, 2, ... 7. In

order to easily describe the computational approaches which were con-

sidered, let us examine the array of bits which form the {xn}:

x : b10 b11 b12 b13 b14 b15 b16 b17

x2: b20 b21 b22 b23 b24 b25 b26 b27

x3: b30 b31 b32 b33 b34 b35 b36 b37

x4: b40 b41 b42 b43 b44 b45 b46 b47

x5 : b50 b51 b52 b53 b54 b55 b56 b57

x6: b60 b61 b62 b63 b64 b65 b66 b6 7

x7 : b70 b71 b72 b73 b74 b75 b76 b77

x8: b80 b81 b82 b83 b84 b85 b86 b87

Xg: b90 b91 b92 b93 b94 b95 b96 b97

Figure 15. Data-Bit Array

31

*g. |---

The combining of this array of bits with the "a" coefficients is the process

by which the desired result, y, is obtained. There exist, however, several

diverse means by which this combining may be accomplished. One means uses

the array of bits in a row-by-row fashion. Each individual row is multiplied

by the corresponding "a" coefficient and the results summed in an accumulator

with the results of the previously executed products. This standard lumped-

arithmetic approach requires 9 full multiplications and 8 adds into the accumulator.

The direct computation using this approach is

9
Y E Yn

n=l

where

y n anxn

and 7

xn= -bno + E b 2 -m

m=l

so a direct computation would require that we compute 9 times

7Yn = a n [-b no + z b mn2-m

m=l

or if we use the Booth algorithm8 ,

7

m=O

where

cmn bmn +bmn+l,n b8n 0

J or if we use the more efficient modified-Booth (or 3 BAAT) algorithm9 ,

3
Yn= and mn2-2mm=O

where
dmn [[tb mn+l + bmn+ 2 + b mn+ 3]

32

One can show that 4BAAT, 5BAAT, etc., algorithms reduce to the 3BAAT

cases for binary multiplication. Some improvement, but not enough.

In our quest for greater computational efficiency, we shall approach

a second means which uses the array of bits of Figure 15, not in a

row-by-row fashion, but in a column-by-column fashion. Interestingly,

the set of bits in a column is used as a memory address. This is an

adaption of the candidate element architecture which was discussed

earlier.

The contents at that memory address is summed in an accumulator with

one-half the previous results. This procedure requires 8 table-lookup

operations and 8 adds into the accumulator, not to form each yn, but

to form the total result, y. The advantages and efficiency of this

latter distributed-arithmetic method are obviously great. The follow-

ing paragraphs describe the means of computation in detail.

4.3 The Mechanics of the Algorithm

Here's how it works. Each xn is composed of the 8 bits, bnm

which combine as follows to establish the value of Xn:

7

xn -bno + ni=l b 2-m (2)

The sign bit, bno' is unity if xn is a negative number, and is zero other-

wise. Now, since 5

xn = 1/ 2 [xn -(-xn (3)

we may then express (2) as:

xn 112[-(bn -bno + z (bn bnm 2-m -2- 7 (4)

n no no M=l nm nm

33

Amok-_-!

Substituting (4) into (1) yields the following expression:

y= 1/2 -2-7[E an l an(bnm n 2-m an(bnbno) (5)n] .9 9 -bnm) =2-m n
[.n~l n I n9l

Initial Partial Sign
Condition Product Correction

(m=O term)

The possible value of each bnm is either 0 or 1, hence the possible value

of each term (bnm -b nm) is + 1. The bracketed term within the "partial

product" braces of (5) can take on a total of 29 possible values, but all

entries appear twice; hence, there are only 29 = 256 distinct values.

If the "a" coefficients are each 8 bits in length, then each of the 256

values will be stored with an accuracy of 8+[log2g]RU = 12 bits. Thet'ign

correction" values as well as the bracketed part of the "initial condition"

value happen to be among the 256 distinct values. Certdinly, one valid

approach to computing (5) is to use a table-lookup operation in which during the

first clock period we form the first partial result'

9 9
= [-r a n]+[z an(bn - bn7)] (6)

n=l n=l

Both bracketed quantities were obtained from the coefficient memory.

During the 2nd through 7th periods we form the 2nd through 7th partial results

9
/rp 12 rp_1 + n=l an (bn,8-p n,8-p) (7)

where p=2 through 7. During the 8th clock period we form the final result

9
2y r /2 r E a (b -b) (8)8 7 n=l n no no

34

During the 9th clock period the result is transferred to the output

register, the circuits are reinitialized, and we are ready to begin

another cycle of computing y. A block diagram of this structure is

shown in Figure 16.

ADDER

DECODER TREE

xi aX2 MEMORY
X2 256 WORDS

x 12 BITS

ADD/SUBTRACT
CONTROL

SPARALLEL ADDER

OUTPUT

Figure 16. Basic PIPE Architecture

4-4. Modifying the Basic Algorithm

A decision was made to make the chip so that the coefficients

could be changed. In order to be able to change coefficients during

computation, two memory sets would be required; one being the present

working memory containing functions of the "old" coefficients, the

(I other being the memory into which we load functions of the new co-

efficients. Unfortunately, the resulting 2 x 256 word x 12 bit/word =
, 6144 bit high-speed memory was not practical to implement.

35

_X- 7.-

Two simplifying steps were taken. First, a restriction was established

such that the coefficients could not be changed during computation.

This halved the memory requirement. Secondly, we partitioned y = yl + Y2

so that

4
Yl= E axny l n n

and 9

Y2 : E anx nn=5

consequently,

4 7 4 4

2y, -27 an + E [an(bnm-bnm)]2-m - z a n(bno -b no)
n=l m=l n=l n=l

and

7 7 9 9
2y2 =- 2- a + a n(b nm-b nm)2 - an (b 10-bno)n=5 n n=l n=5 n=5

Now for yl we need only a 1/2-24 = 8-word partial-product memory, and for

Y2 we need only 1/2.2 = 16-word partial-product memory, a dramatic

reduction in the number of stored words.

4
The 16 possible values of I a (b -b are +A through +A7

n=l n nm re A0 truh+ 7 a

9
shown in Table 8; the 32 possible values of E a (bn -b) are _ 0n=5 n min_

through +B15
as shown in

Table 9.

t

36

, TABLE 8. "A" PARTIAL PRODUCT MEMORY CONTENTS AND ADDRESSING

ADDRESS

b b b b "A" PARTIAL PRODUCT MEMORYm b3m b2m blm

0 0 0 0 -(a 4 + a3) - (a2 + a 1) =-A 0

0 0 I -(a 4 + a3) - (a 2 ,)

0 0 1 0 (a + a + (a a -A

0 0 1 - (a4
+ a) + (a + a) -A

0o 0 1 1 (a 4 3 2 1 3

4 cow
0 1 0 0 - (a - a3) - (a 2 - a I) -A5

4 3 2 1

0 1 0 1 - (a4 -a 3)
+ (a2

+ a) = -A7

, 1 0 0 0 - (a 4 - a 5)+-(a 2 -a I) =-A+A1+ a)-A
0 1 (a 4-a)3+(a2 1 7

1 0 0 0 + (a 4 - a)- (a 2 + a I) +Aj

1 0 0 + (a 4 - a (a 2 - a +A

1 0 1 0 + (a 4 - a3) + (a 2 a) = A

1 I 0 1 0 + (a 4 -+a 3)+-(a 2 + al) =A +Am-q

.... I 0] +(a 4 +a 3) -(a 2 +-a I) 3 A

4 1 0 11

S 1 1 + (a4 + a3) + (a 2 -a 1) = +A 1
1 1 1 + (a 4 + a 3) +(a 2 al) = "A 0

37

wJ

-h '.-. ..-

TABLE 9. "B" PAR'-IAL PRODUCT MEMORY CONTENTS ANIj Af'DlHFSSI%(

ADDRESS

h 9m b 18b b5 7m !m m R ARTIAL 1ROWICT MLMORY

0 0 0 o 0 (a9 a + a,it ~ a Gl z

0 0 0 - 9 -(8 7) -(6 5)

O 0 0 1 0 -a -(a + a)+(a I =-

*9- 8 7 6 5

0 0II PAR 1[Aal-(a8+ 7 + },~(ar 6! a

0 0 0 1 1 -a -(a + a7) + (a + a,) = -B
9 8 7 6 5 3

0 0 1 0 1 -a -(a - a7) - (a - a5) -B

9 8 7 6 5 5~
0 0 1 1 0 -a 9 -(a 8 + a) + (a 6 - a) = -B2

9 8 7 5
0 0 1 1 0 -a -(a 8 - a 7) + (a 6 + a 5)

0 0 1 01 0 -a9-(a8 - a 7) + (a6 + a5) = -B 4

S9- 8 7 6 5 7

0 1 0 0 1 -a+(a -a 7) (a6 - i)t= -B 8

0 0 0 a9 +(. ; 7 (at 5 -

o 1 0 1 -a 9 8 - a 7) + (a6 5 -B 10

0 1 0 0 1 -a9+(a - a+) (a-a) -B

9 8 7 6 5 11
0 1 1 0 0 -a 9+(a 8 - a) - (a + a) -B

0 1 1 0 1 -a 9+(a 8 -a 7)+(a 6 -a) = -B

0 1 1 1 1 -a +(a + a+) + (a - a)) -B

i~ ~~~ o o o o -(8 7{)(;' 40 1 1 0a 9 (a 8 + a7) - (6 + a = - 2

1 0 0 1 a9+(a8 + a7) (- a) 4-BH

0 0 0 1 1 a -(a + a) + (a - a) 4- 4
9 8 7 (,) 1

1 0 0 a 9 -(a 8 -a)- (a + a) -; BI

1 0 0 0 1 a 9 -(aa, - a 5) +41

1 0 1 o 0 a9- a) + (:, -a) +B

9 8 7 6 1
1 0 1 1 1 a -(a 8 a7) + (a + it +B

9 8 7 - +)

1 0 1 0 1 0 a9 (a "I + (:I I,,)

o ao-(a 8 - 7 + (a + ;I,,) = +B 8

a9+(8 - 7 7"

38

I

TABLE 9. "B" PARTIAL PRODUCT MEMORY CONTENTS AND ADDRESSING (CONTD.)

ADDRESS

:b b b b "B" PARTIAL PRODUCT MEMORIb9m bsm "7m 6m b5m

1 1 0 0 1 a9 +(a 8 -a 7) - (a6 - a5) +B6

1 1 0 1 0 a9 +(a8 -a 7) + (a6 -a 5) = +B 5

1 1 0 1 1 a9+(a 8 -a 7) + (a6 + a5) +B4 >.

0

1 1 1 0 0 a9+(a+a) - (a+a) = +B)
9 8 9 6 5 3

1 1 1 0 1 a+(a8 + a7)- (a 6 -a 5) +B2

1 1 1 1 0 a9 +(a 8 -t a) + (a 6 -a 5) +B

1 1 1 I a9 +(a 8 + a 7) + (a 6 + a5) =+B 0

39

. - - . .
I

I"

4-5 Mechanization of the Modified Algorithm

The PIPE consists of six basic sections: the coefficient input section,

the partial-product memory section, the data input section, the arithmetic

section, the output section, and the timing and control section.

4.5.1 Coefficient Input Section

The coefficients (the a's) of the defining equations of the PIPE are

each 8-bit signed fractional numbers such that -l<a<l, the maximum value

of which is 1-2- 7. The partial-products (partial-product-memory content)

for yl is from the set of numbers A0 through A7, the largest of whose

values can be as great as 4(1-2"7). Similarly, the partial-products for Y2'

from the set of numbers B0 through B15, can have values as great as

5(-2-7) = 23(1-2-l -2 2- 7 +2-8 +2- 10

an 11-bit number. We shall now examine the procedures by which these

numbers are generated.

The coefficient-input section is functionally diagrammed in Figure 17.

There are 9 8-bit wide, parallel registers, designated a1 through a9 into

which the coefficients are loaded. Their inputs are wired irn parallel to

a common 8-bit coefficient-input bus. When the "read input" line is true,

the number which is present on the 8-bit coefficient bus is loaded into the

input register which was identific j the pattern on the "input-address"

lines. The loading of these coefficients is completely independent of the

functioning of the arithmetic section of the PIPE. However, after all the

coefficients which are to be loaded into the PIPE have been loaded (by the

procedure which was described above) then the PIPE is asked to "digest"

4 these values. When the "load memo,-v" input is true, a sequence of events

is initiated which is indicated in the timing diagram of Figure 18. First,

coefficient registers a1 through a4 parallel-load the shift registers I

through 4. The outputs of the shift registers are clocked through comple-

menters to generate the negative of the numbers. Each complementer

40

..I.F... - -I l

00 'o

44
jW

44,

411
Ir

CL,

00 z
N
N

LO
N

N
N

NE

I--

E

I--

(0 0

- 4-

N -L

I-
0.0

C C C CI .
0,I z u-

1 -- 04 -
0 cc 0 U) CC N 0 CCCC4-

W U) - L (A (
LU m - c L, c

z (c0i000 j0U nuju i0Z0

N

LU
... c

C,, C/) C000. U -C L
0 < w

0. FE -w
Lw L uu

wU)0 C1Icn ou 0cv,0O 0i 'Acrc~ '0 oco m c

42

- 2--

consists of an inverter followed by a single-input serial adder with a

"l" preset in its carry flip flop. The 4 streams of serial data from

the 4 complementers pass through the adder tree to generate -A0 through

* -A7. The last bit of the serial data is held at the output of each shift

register for 3 additional clock periods in order to spread the sign and to

drive the adder tree by 11-bit long data streams. This is a necessary

step to ensure sign correction. By forming negative values rather than

positive values, we can avoid some carry propagation problems later.

Immediately after the formation of -A0 through -A7, registers a5 through

a9 then parallel load shift registers I through 5 and the process which

was described to generate -A0 through -A7, is repeated in order to

generate -B0 through -B15 , but using 5 data streams rather than 4.

While the PIPE is loading its coefficients as described above, the out-

put from the arithmetic section is not valid, therefore, the output

register (which is discussed in section 4.5.5) is forced to a RESET state.

After the coefficient digestion has occurred, the coefficient load-control

logic pauses until the output from the arithmetic section is again valid.

At that time the output register is restored to normal operation.

4.5.2 Partial-Product-Memory Section

The organization of the memory section is shown in Figure 19.

Eight serial data streams, -A0 through -A7, are serially clocked from

the adder tree into partial-product memory A, thereby loading the upper

half of Table 8 into the memory. Each of these values, -A0 through -A7,

although loaded serially, will be read out in parallel onto a tristate bus

which feeds the input register of arithmetic-section A (which is discussed

below). The addressing means for reading out these coefficients is also

discussed below.

Similarly, sixteen data streams, -B0 through -B15, are serially clocked

from the adder tree into partial product memory B, thereby loading the

upper half of Table 9 into the memory. Again, each of these values will

be read out in parallel onto a tristate bus which feeds the input register

of arithmetic section B.

43

jq

U) La

z I
w 12

0 ~ ~ ~ ~ L I=L~ Ou- ~

>>

0 LU

L L

>~ 0

CC I- U
J -4 0

2- 0 L
ZW ui .N

col

W 0 0 0 wW ~E

Wii

-- J
Z LU < _IN
o 2 cc a.-

W~cw U

m 0 a c,<44

< Lu C) u U

The lower-half of Table 8 or 9 is effectively read into the arithmetic

section by complementing its opposite-signed counterpart, e.g., +A0 is

entered by reading -A0 from the memory, inverting each bit, and adding
"1" through the carry input of the arithmetic section. This will be

discussed later in greater detail.

4.5.3 Data Input Section

The data input section of Figure 20 performs three functions.

The first function is the loading of the input data words into the

appropriate shift registers, sometimes directly, and sometimes via the

companion parallel register. In control state 0, no inputs are accepted.

In control state 1, 9 parallel input words are accepted in succession.

Switches SWI and SW2 are closed and the load-mode-select logic provides

a "read" signal to the parallel registers, 1 through 9, in succession.

In control state 2 the switches SWl and SW2 are open. The load-mode-

select logic provides a "read" signal to parallel registers 1, 4 and 7

simultaneously; then to parallel registers 2, 5 and 8 simultaneously;

then to parallel registers 3, 6, and 9 simultaneously. In control state 3

switches 1, 2, 5 and 8 are open, switches 3, 4, 6, 7, 9 and 10 are closed.

After parallel loading registers 1, 4 and 7, the data are shifted. The

data which are loaded into register 1 flows sequentially through shift

registers 1, 2 and 3; the data which are loaded into register 4 flows

sequentially through shift registers 4, 5 and 6; the data which are loaded

into register 7 flows sequentially through shift registers 7, 8 and 9.

In control state 4, switches l and 2 are open while all other switches

are closed. After the input is parallel loaded into register 1, it is

permitted to flow sequentially through all 9 shift registers. In control

state 5, serial input data flow in through the Sl port. Switches 1 and 2

remain open, switches 3 through 10 remain closed, and the data freely

flow through shift registers I through 9 and out through the SO port.

45

ijLAM

40 0'

o

10

I 4 . i _ .

FL7

i
- 4

-- 4 -o ;;:""

Alk)

•4--' s s

4446

40 44h I i I 0

In control state 6, the data are serially loaded into all 9 shift registers

simultaneously. The input to the first shift register is through port SI.

The second through ninth shift registers are loaded via the 8-bit bus and

switches 3 through 10 as shown in Figure 20. In control state 7, three

serial data words are loaded. The first data word is passed sequentially

through the first three shift registers via input port SI and switches 3

and 4. The second word is passed sequentially through the second three

shift register via switches 5, 6 and 7, and the third data word is similarly

passed through the last three registers via switches 8, 9 and 10.

The purpose of the outputs of the registers is described in Tables 8 and 9.

The outputs of the first 4 shift registers drive a 1-of-out-of 8 decoder.

Forming the EXOR of b4m with each of blm, b2m and b3m effectively folds the

lower half of Table 8 onto the upper half; similarly the outputs of the last

5 shift registers drive a l-out-of-16 decoder. Forming the EXOR of b 9 with

each of b5m b 6m b 7m and b8m effectively folds the lower half of Table 9

onto the upper half. The outputs of the 4th and 9th shift registers also control

the add/subtract functions of parallel adders, A and B respectively. By this

means the adders select the appropriately signed inputs.

4.5.4 Arithmetic Section

Now we'll examine the arithmetic section which is composed of two adder/

subtracter sections.

Refer to Figure 21. MUX of the "A" adder/subtracter accepts -A0 through -A7
which are the partial-product inputs from partial-product memory A, and selects

the appropriately signed inputs. The 11-bit input is converted to a 12-bit

input by sign spreading; i.e., the llth and 12th bits are strapped together.

MUX 2 selects either the initial condition from the initial-.condition register

or the previous result divided by 2. The LSB of the previous sum is gated into

a carry generator, so no accuracy is lost. Similarly, MUX 1 of the "B" adder/

subtracter accepts inputs -B0 through -B15, which are the inputs from partial-

|, product memory B, and selects the appropriately signed inputs; MUX 2 of the "B"

adder/subtracter selects the initial condition of the previous result divided by 2.

*t 47

cln

00

00

coo

E)E

cl - a.
0L w cc w

cc ~ ~ wr -j>-

ir _ L - E -
c4--

I
<I

L

C0

48-

* Since the values which are stored in the partial-product memories are -A0

through -A7 and -B0 through -B15, when the negative value is required, the

memory content is simply gated directly through MUX 1. When the positive

value is required, the memory content is inverted by complementing all bits,

and a "I" is added through the carry input to the parallel adder.

After 2y, and 2y2 are formed, the final result is obtained by gating l/2(2y l)

through MUX 1 and l/2(2y2) through MUX 2 of the "B" adder/subtracter. The

final carry is provided by the carry generator which sums the LSB's from

both 2y, and 2y2 . The final most-significant 10-bit part of y is then gated

into a holding register. The remaining 10 least-significant bits of the full-

precision answer arealso available. Lets see why we're interested in so many

bits since we are permitting the word length of the input data word and of the

coefficient to be each only 8 bits, including sign.

The product of a pair of 2's complement 8-bit numbers is 15 bits in length. The

sum of 5 15-bit numbers is 14 + 1og25 = 18 bits in length; the sum of 9 15-bit

numbers is 15 + 1og 29 = 19 bits in length.

If we consider the input data words (the xn) as fractions, their format will be

the same as the format of the input coefficients. The value of y1 can be as great

as 22(1-27)2; the value of Y2 can be as great as (1+22).(-27)2 . Since the

values which are actually formed by the adders are 2y, and 2y2, their maximum

values in binary format are

max 0x 0 1 1 1. 1 1 0 0 0 0 0 0 0 0 0

2y 2 max = 0x 0 0 1. 1 1 0 1 1 0 0 0 0 0 1 0 1

4-bit
integer

Sign J t

V.___.. value formed in
lower delay register

sum gated
out to carry
generator

49

J

72|

During the formation of y = 1/2(2y, + 2y2) ! (1-2-7)2 we have the most

significant 11 bits of y in the MSB register with a redundant sign bit

for a total of 12 bits. The 2 LSB's are combined with the 8-bit carry-

generator result. The answer is provided as a pair of 10-bit words, the

10 MSB's and the 10 LSB's.

The carry generator is a simple 3-input serial adder with the usual sum

and carry outputs. During each of the 8 computational cycles each

parallel adder sends the least-significant bit of its output to the carry

generator. The carry generator in turn sends its "sum out" to an 8-bit

shift register. The contents of the shift register are placed in the 8

LSB locations of the 10-bit output register. The other 2 bits which go

into this register are the 2 LSB's of the MSB half of y. While the carry

generator is providing its 8th "sum out" value, it is also providing a

carry input to parallel adder B which is forming its final answer y = 1/2

(2y, + 2Y2). A computing sequence is diagrammed in Figure 22.

4.5.5 Output Section

The output section which is also shown in Figure 21 consists of a 10-bit

output register which drives a tristate bus, a 10-bit MSB register, a 10-bit

LSB register, and the associated control and switching functions. The 10

LSB's are derived from two sources: the 8 LSB's are clocked from the carry

generator into the 8-bit LSB serial/parallel register and held; this is augmented

by another pair of bits which are the 2 LSB's from the final output of the adder

B. This 10-bit result is then placed automatically into the output register.

The 10 MSB's may be read into the output register by making the READ MSB line

true. At any time, the output register may be cleared and the tristate bus

allowed to float by making the RESET line true. The MSB's will not be read

except upon command, but once every computational cycle the LSB's are read.

Reading of the LSB's can be inhibited by holding the RESET linc true.

50

00r

117ITIAI, CONDITION x x x x x x x x x x x

FIRST PARTIAL PRODUCT x x x x x x x x x x x

iF PARTIAL PRODUCT + (CARRY IN) (x)

FIRST PARTIAL SUM x x x x x x x x x x x x

2LECOND PARTIAL PRODUCT x x x x x x xx x x x

IF PARTIAL, PRODUCT + (x)

GECOND PARTIAL SUM X X X X X X X X x x x x

THIRD PARTIAL PRODUCT x x x x x x x x x x x

I F PARTIAL PRODUCT + (x)

THIRD PARTIAL SUM x x x x x x x x x x x x

FOIUR'T'}H PARTIAL, PRODUCT x x x x x x x x x x x

IF PARTIAL PRODUCT + (x)

FOURTH PARTIAL SUM x x x x x x x x x x x x

F[FTH1 PARTIAL PRODUCT x x x x x x x x x x x

IF 'ARTIAL PRODUCT + (x)

FIFTH PARTIAL SUM x x x x x x x x x x x x

SIXTH PARTIAL PRODUCT x x x x x x x x xx x

IF PARTIAL PRODUCT + (x)

SIXTH PARTIAL SUM x x x x x x x x x x x x

SEVENTH PARTIAL PRODUCT x x x x x x x x x x x

IF PARTIAL PRODUCT + (x)

SEVENTH PARTIAL SUM x x x x x x x x x x x x

EIGHTH PARTIAL PRODUCT x xx x xx x xx x x

IF PARTIAL PRODUCT + (x)

SUM Y] MSB's x x x x x x x x x x x x
LSB's TO CARRY GEN. x x x x x x x x

;mY2 LSB's TO CARRY GEN. x x x x x x x x

MSB's x x x x x x x x x x x

CARRY FROM CARRY GEN. x

SUM Y MSB's x x x x x x x x x x x x

LSB's FROM SHIFT REG. x x x x x x x x

MSB I s LSB ' s

OUTPUT OUTPUT

Figure 22. Computing Sequence

51

K

A forced RESET occurs when a new set of coefficients is being digested. This

RESET will be held until the output of the arithmetic section is again valid.

4.5.6 Timing and Control Section

Figure 23 shows the timing of all the arithmetic operations. The

timing requirements are extremely simple. Simple delay, invert, and NAND

operations on the input-word-timing pulse can provide all necessary internal

timing signals for the arithmetic section as shown in Figure 24.

4.5.7 Overall Chip Structure

Figure 25 illustrates the entire chip and the relationship between the

various parts which were described above. The complete set of logic diagrams

which were developed is in the Appendix.

4.5.8 Using Multiple Devices for High Accuracy

The high-accuracy computation mode can be understood by considering

a set of 15-bit inputs which can be expressed as the following

14 7 7xn = -bn + zb 2 - b E -n O E
n no m=l nm 2 [-bno + m bnm 2 + [O + E bnm+7 2-] 2

m=l m=l

=x Mn + xLn 2
-7

where xMn are the most significant bits of x n and xLn are the least significant

bits. We can similarly express the coefficients an = aMn + a Ln2-7 so the sum
of the products can be written as

9 9
y=E a nxn = 7 (afMn + aLn 2-)(x +x 2-)

n=l n n=l Mn Ln
9 9 9 2-7 9 214

a+ Ln 2 + [xLn] 2ln~ nM E aLnx +n an X~n aI nn]

n=l n=l n=l n=l

In order to perform multiplication with an input accuracy of 15 bits and an out-

put accuracy of 33 bits requires a set of four PIPE devices plus three external

adders.

52

.. . J

QD4

N N3

o 4-)

Nl

0C >

N
IM

N
0

o

0 t- 0 gc

2 0 U

z so 00 5

N 03

ME Wil

(-)W

I0--

CCD

FS.

0

LL LLI I
4iLU0 -

z -CC (D-)

w A_ _ _ _ _ _ _ _ _ L A A
0

I-

0T
1- 'U

C~o CL

54~

2 0 0

CN m

0

ALL

LLA

I--

-I S

4.U

9.-24.0
L U

L U5
5

IL

APPENDIX

LOGIC DESIGN AND LAYOUT

14

56

_____ ____ ____ _ E _ ___ ____

I 00

vr-~~C - r _ _ _

CDTO XD7r
16S 68 X

~HUQV 'hTLVC1V
__ _ __ _4

CJ i 00 t V
C)4~ o r-q

-O I CD 'Jjn-Z 1.0 rH-

V)* x x -n

I--4.1 Cj L

00) tIn

C: -4 -4
C C) -

Iz1

* 57

rAJ .T ---,

CAOO-03 Idl-8

LCOEFFICIENT
REGISTER AND
SERIAL ADDER

SABO -7 LSAC 00-15

DATA A 01-08

DRAD OO-15WMOR

ElB

DAAB 10

co DA 0-7NIR

Figure 27. PIPE Integrated Circuit Block Diagram

94

58

REFERENCES

1. J.M.S. Prewitt, "Object Enhancement and Extraction," Picture
Processing and Psychopictorics, B. S. Lipkin and A. Rosenfield,
editors; Academic Press, New York, 1970, pg. 126.

2. G. S. Robinson, "Detection and Coding of Edges Using Directional
Masks," SPIE Vol. 87, Advances in Image Transmission Techniques,1976, pp. 117-125.

3. A. Peled, B. Liu, Dioital Signal Processing, John Wiley & Sons,
New York, 1976, Chapt. 5.

4. S. A. White, On Mechanization of Vector Multiplication, Proc. IEEE,
Vol. 63, pp. 730-731, April 1975.

5. M. Buttner and H. W. Schussler, "On Structures for the Implementation
of Distributed Arithmetic, NTZ Communications Journal, Vol. 6, June 1975.

6. S. A. White, "An Adaptive Recursive Digital Filter," Proc. 9th Asilomar
Conference on Circuits,_Systems,. and Computers, Pacific Grove, CA,

Nov. 1975.

7. T. L. Chang, "A Low Roundoff Noise Digital Filter Structure," Proc. IEEE
ISCAS, May 1978.

8. A. D. Booth, "A Signed Binary Multiplication Technique," Quarterly
Journal of Mechanics and Applied Mathematics, Vol. 4, part 2, 1951.

9. 0. L. MacSorley, "High-Speed Arithmetic in Binary Computers," Proc. IRE,
Jan. 1961, pp. 67-91.

59
t'.U.S.Government Printing Office: 1981 757-002/572

I

